Volumes, Agrandissement-réduction

Exercices de Brevet

Exercice 1: (n°15 p 263)

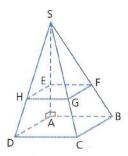
On réalise une maquette d'une pièce à l'échelle 1/200.

- Nappeler ce que signifie « à l'échelle 1/200 ».
- Quelle sera, sur la maquette, la longueur en cm d'un mur de 12 m?
- La surface réelle au sol de cette pièce est de 48 m². Quelle est la surface du sol de cette pièce dans la maquette (en cm²)?
- ♠ Le volume de cette pièce sur la maquette est égal à 13,125 cm³.

Quel est le volume réel de la pièce (en cm³, puis en m³) ?

Exercice 2: (n°24 p 264)

La figure ci-dessous représente une pyramide \mathscr{D} de sommet S. Sa base est un carré ABCD tel que AB = 6 cm; sa hauteur [SA] est telle que SA = 9 cm.



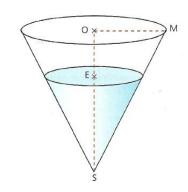
- 1 Calculer le volume de la pyramide \mathscr{P} .
- $\ensuremath{\mathfrak{Q}}$ E est le point de [SA] défini par SE = 6 cm. EFGH est la section de la pyramide $\ensuremath{\mathfrak{P}}$ par un plan parallèle à sa base ; la pyramide $\ensuremath{\mathfrak{P}}_1$ de sommet S et de base EFGH est donc une réduction de la pyramide $\ensuremath{\mathfrak{P}}.$

Calculer le facteur k de cette réduction.

 $oldsymbol{\textcircled{6}}$ Calculer le volume de la pyramide \mathcal{P}_1 .

Exercice 3: (n°27 p 265)

Un bassin a la forme d'un cône de révolution qui a pour base un disque de rayon OM égal à 3 m et dont la hauteur SO est égale à 6 m.



- **① a.** Montrer que son volume exact \mathcal{V} , en m³, est égal à 18π . En donner l'arrondi au dm³.
- b. Ce volume représente-t-il plus ou moins de 10 000 litres ?
- 2 a. Combien de temps faudrait-il à une pompe débitant 15 litres par seconde pour remplir complètement ce bassin ? Donner le résultat arrondi à la seconde.
- b. Cette durée est-elle inférieure à une heure ?
- ② On remplit ce bassin avec de l'eau sur une hauteur de 4 m. On admet que l'eau occupe un cône qui est une réduction du bassin.
- a. Ouel est le facteur de la réduction ?
- **b**. En déduire le volume d'eau exact \mathscr{V}^\prime contenu dans le bassin.

Exercice 4: (n°29 p 265)

Un cône de révolution a pour rayon de base OM = 3 cm et pour hauteur OS = 14 cm.

- $oldsymbol{0}$ On appelle $\mathcal V$ le volume de ce cône en cm³. Montrer que $\mathcal V=42\pi$.
- 2 Dans ce cône, on verse d'abord du chocolat fondu jusqu'au point O', puis on complète avec de la crème glacée à la pistache jusqu'au point O.

Le cône formé par le chocolat fondu de volume $\mathscr V'$ en cm³, est une réduction du cône initial, de volume $\mathscr V$ en cm³. Sachant que O'S vaut 3,5 cm, par quel calcul simple passet-on de OS à O'S ? de $\mathscr V$ à $\mathscr V'$?

En déduire la valeur de \mathscr{V}' en fonction de π .

Quel est le pourcentage de chocolat fondu dans ce cône?

Exercice 5: (n°39 p 267)

Dans le fond d'un vieux tiroir, on a trouvé la bobine en bois ci-après (figure 2).

Elle est constituée de deux troncs de cône identiques et d'une partie cylindrique.

Chaque tronc de cône pourrait être obtenu en sectionnant, parallèlement à sa base et à 1 cm de hauteur, un grand cône \mathscr{C}_1 de base 9 cm² et de hauteur 3 cm, et en retirant le petit cône \mathscr{C}_2 (figure 1).

- 1 Quel est le volume du cône \mathscr{C}_1 ?
- 9 a. Quel est le facteur de réduction qui permet de passer du cône \mathcal{C}_1 au cône \mathcal{C}_2 ?
- $\mathfrak b$. En déduire l'aire de la base du cône $\mathscr C_2$, puis le volume de la partie cylindrique de la bobine.
- Déduire des questions précédentes le volume de la bobine. En donner une valeur arrondie au cm³.

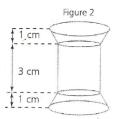


Figure 1

